GENERAL ADAPTATION SYNDROME AND ITS APPLICATIONS IN SPORT TRAINING

NATALIA VERKHOSHANSKY

THANKS TO DANNY RAIMONDI FOR HIS ENGLISH TEXT REVIEW
1. INTRODUCTION
 1.1. FORMULATION OF THE GAS CONCEPT
 1.2. THE FIRST ATTEMPTS TO APPLY THE GAS CONCEPT IN SPORT TRAINING
 1.3. TYPICAL OPINIONS ABOUT THE ROLE OF GAS IN SPORT TRAINING
 1.4. THE PROBLEMS IN APPLYING THE GAS CONCEPT IN SPORT TRAINING

2. THE GAS CONCEPT: KEY POINTS, CRITIQUE AND UPDATES
 2.1. KEY POINTS OF SELYE’S EXPERIMENTAL FINDINGS
 2.2. THEORETICAL CONCEPT OF GAS AND ITS CRITIQUE
 2.3. GARKAVI’S UPDATES TO SELYE’S RESEARCHES DATA AND THEIR THEORETICAL MEANING

3. APPLYING THE GAS CONCEPT IN SPORT TRAINING
 3.1. WHAT IS A TYPICAL REACTION OF THE ATHLETE’S BODY ON THE LOADS USED DURING TRAINING AND COMPETITIVE ACTIVITY?
 3.2. WHAT LEVEL THE TRAINING LOADS SHOULD HAVE TO PROVIDE A TRAINING EFFECT?
 3.3. WHAT FACTORS AFFECTS THE ABILITY OF AN ATHLETE TO ADAPT?
 3.4. WHAT SIGNS AND SYMPTOMS ARE INDICATIVE OF A FAILURE OF THE ATHLETE’S ADAPTABILITY?
In the 1936, Hans Selye, discovered the syndrome produced by diverse nocuous agents.

“A SYNDROME PRODUCED BY DIVERSE NOCIOUS AGENTS

Nature, vol. 138, 1936

“...Experiments on rats show that if the organism is severely damaged by acute nonspecific nocuous agents such as exposure to cold, surgical injury, production of spinal shock (transcition of the cord), excessive muscular exercise, or intoxications with sub lethal doses of diverse drugs (adrenaline, atropine, morphine, formaldehyde, etc.), a typical syndrome appears, the symptoms of which are independent of the nature of the damaging agent or the pharmacological type of the drug employed, and represent rather a response to damage as such...

This syndrome develops in three stages with different manifestations: the first stage occurs 6–48 hours after the initial injury, the second stage occurs beginning 48 hours after the injury. If the treatment be continued with relatively small doses of the drug or relatively slight injuries, the animals will build up such resistance that in the later part of the second stage the appearance and function of their organs returns practically to normal; but with further continued treatment, after a period of one to three months (depending on the severity of the damaging agent), the animals lose their resistance and succumb with symptoms similar to those seen in the first stage, this phase of exhaustion being regarded as the third stage of the syndrome.

...It seems to us that more or less pronounced forms of this three-stage reaction represent the usual response of the organism to stimuli such as temperature changes, drugs, muscular exercise, etc., to which habituation or inurement can occur.”
In 1938, H.Selye described the organism’s response to “a stimulus to the quality or intensity of which it is not adapted” as the General Adaptation Syndrome (GAS).

“It has been shown that when an organism is exposed to a stimulus to the quality or intensity of which it is not adapted, it responds with a reaction which has been termed the “general adaptation syndrome”. The symptoms of this syndrome…are largely independent of the specific nature of the agent to which adaptation occurs, so that the reaction has been regarded as them somatic expression of damage as such.

The general adaptation syndrome develops in three distinct stages which have been termed: 1, the stage of the alarm reaction; 2, the stage of resistance, and 3, the stage of exhaustion..

…It seems to us that more or less pronounced forms of this three-stage reaction represent the usual response of the organism to stimuli such as temperature changes, drugs, muscular exercise, etc., to which habituation or inurement can occur.” (H. Selye, 1938)
To name the effect of *acute non specific nocuous agents*, Hans Selye coined the term “Stress”, which has been accepted into the lexicon of various other languages.

Selye noticed that the changes, which take place within the body during both physical and emotional stress have the same pattern. They disrupt normal physiologic mechanisms and trigger an array of diseases, which lead to illness and eventually death.

Later, Selye conceptualized the physiology of stress as having two components:

1) the development of a pathological state from ongoing, unrelieved stress, and

2) a set of responses which he called the “General Adaptation Syndrome”, “to which habituation or inurnment can occur”.

“The general adaptation syndrome is defined as the sum of all non-specific, systemic reactions of the body which ensue upon long continued exposure to stress”.

Selye showed that the organism’s adaptation to stress is mediated by the common mechanism, related with the activity of hypothalamic-pituitary-adrenal axis (HPA axis): interactions among glands, hormones, and parts of the midbrain.
"Stress is the common denominator of all adaptive reactions of the body."

...In other dimension, in time, the triphasic evolution of the stress response can be used as a measurable fact. All the changes just enumerated varied during the three phases of the G.A.S. in a characteristic and predictable manner. This variation of response during exposure to unvarying stressor made it possible to use the measurable indicators of stress (structural or chemical changes) for the appraisal of the evolution of the GAS in time…. (H.Selye, “Stress of life”, 1956)
1.2. THE FIRST ATTEMPTS TO APPLY THE GAS CONCEPT IN SPORT TRAINING

Prof. Ludwig Prokop was the first who used the Selye’s concept of General Adaptation Syndrome to explain the necessity to vary (periodically decrease) the volume of training loads during the sport training (Prokop, L., Rossner F. Erfolg im Sport: Theorie und Praxis der Leistungssteigerung. Vien/Munich: Herbert St. Fürlinger, 1959)

Prof. Lev Matveev, author of the book “The problem of Periodization in the Training Process” (1964), was not in agreement with L. Prokop. According to Matveev, the GAS theory of Selye cannot be used as the theoretical framework of the concept of Periodization, because “Selye’s stress theory was based on the pathological material”.
In the **September of 1960**, Fred Wilt, editor of *Track Technique*, published the article "Stress and Training". In this article, Wilt recognized the importance of Selye’s work.

To further expand on Selye’s significant contribution, Wilt referenced the work of Forbes Carlile, Australian Olympic swim coach, former marathon runner and physiology lecturer of the Sydney University.

In the **September 1961** issue of *Track Technique*, Carlile published the article "*The Athlete and Adaptation to Stress*" in which he proposed the acceptance of Selye’s General Adaptation Syndrome to provide a theoretical framework for coaching and future scientific research. Carlile supposed that what was termed "staleness" had its genesis in the G.A.S. and was indicative that the athlete had reached the final stage of exhaustion.
Stress is recognised as a typical reaction of the athlete’s body on the loads used during training and competitive activity, so increasing the athlete’s performance is based on the adaptation to stress.

A diagram of the General Adaptation Syndrome model

1.3. Typical Opinions about the Role of GAS in Sport Training

“...Training may than be described as the process whereby the body is systemically exposed to a given set of stressors to enable it to efficiently manage future exposure to those stressors” (M. Siff).
In was accepted, that in traditional periodization models, there are multiple bouts of training, resulting in multiple flights of alarm and resistance stages.
“Training of an athlete is a great responsibility because two of his very important personal attributes are being used—the athlete’s time and his powers of adaptation to life stresses. Training him may be likened to bending a green twig. The body may eventually mould itself to the force of continuously imposed physical exercise, but a little too much and the body, like the twig, may show signs of strain. More stress and the breaking point may be reached.”

In the September 1961, Forbes Carlile asked two questions considered essential to train athletes:

1) What are the main stresses which affect the ability of an athlete to adapt? and

2) What signs and symptoms are indicative of a failure of an athlete to adapt to stress?

Forbes Carlile. “THE HISTORY OF AUSTRALIAN SWIMMING TRAINING” A presentation at the World Swimming Coaches Clinic in Indianapolis, Indiana, under the auspices of the American Swimming Coaches Association. October 9, 2004

“One reason we undertook testing lay in the hypothesis that marked physiological changes would serve as a good guide for detecting the over trained state…We quite often found marked physiological changes coinciding with poor performances. Nevertheless, it should be said that the testing approach turned out in one respect to be a false trail because these tests only touched on unravelling the complexity of the situation of overtraining. No one test or even a group of tests can be all revealing or common to all over trained athletes.”
"Important condition of ensuring the training effect is the stress influence of training loads, which brings to increasing the level of homeostatic regulation and to mobilization of the body’s energetic and plastic resources”

What the stress influence is?

“Stress is the organism’s state (status, condition) characterized by the development of general non-specific adaptation mechanism, which assures the positive background for the accomplishment of homeostatic reactions and mobilization of the organism’s defence abilities.”

“Often, stress is related to the influence of a certain unusual or extraordinary strong irritant. However, as it was shown, even very common irritants could be stressors. Obviously, decisive arguments is not the inequality or extreme of this irritant, but its ability to activate the non-specific mechanisms of adaptation “
"The adaptation toward the physical and psychological stress is the main factor for obtaining the high sports performance."

…The specific program including the stress training is the keystone for creating the psychological stability and work-capacity during the anxiety situations as the sport competition.

…The stress training is related to the "threshold of adaptive changes". This is the moment, that the stimulus able to provoke a "shaking" effect on the different bodily function must be changed in intention to produce the new reactions and posteriorly new structural changes”.

What level of stressor’s influence corresponds to the "threshold of adaptive changes"?
The most important questions of training practice are related to the term “Stress”

Stress is a term that is commonly used today but has become increasingly difficult to define. It shares, to some extent, common meanings in both the biological and psychological sciences. Stress typically describes a negative concept that can have an impact on one’s mental and physical well-being, but it is unclear what exactly defines stress and whether or not stress is a cause, an effect, or the process connecting the two.

“…Selye’s notion of a universal non-specific reaction has become accepted in almost all forms of human discourse about life and health, and physiologists in the 1990s use Stress as a unifying concept to understand the interaction of organic life with the environment. However, this modern use of Stress contains none of the physiological postulates of Selye’s original findings…”

Russell Viner
Putting Stress in Life
Hans Selye and the Making of Stress Theory
Social Studies of Science June 1999 vol. 29 no. 3 391-410
At the end of 1970°, the GAS concept was updated and reformulated by the group of Russian scientists, leaded by prof. L.Garkavi. It was showed that the tem “Stress” should be used only to name the pathological organism’s reaction on the influence of very strong, damaging stimuli; the stress reaction cannot be a common pattern (common denominator) for all adaptive reactions of the body.

“…It was experimentally verified, that the organism responds on the influence of external and internal environmental factors with qualitatively different general non-specific adaptation reactions, which regularity of development was unknown before: the factors having mild (threshold) or middle (moderate) biological activity provoke the development of different sets of neuro-endocrine and metabolic changes, which assure, as consequence, a gradual or fast increasing of non-specific organism’s resistance”.

State register of the USSR for inventions and discoveries. Discovery No. 158, 1976
“…The attractiveness of his (H.Selye) proposed theory on the role of stress (reactions) in the process of adaptation was so great that in the future, finally and fully adopted by a huge army of his followers, including those in sports science. Typical opinion expressed in their works is that to provide training effect, the training loads should have a stress influence ... and stress is a typical reaction of the athlete’s organism on the loads used during training and competitive activity.

…The later Russian researches demonstrated that stress, as only one of the adaptive reactions to the excessive exposure (in its classical sense), does not play a significant role in the mechanisms of adaptation to training loads.

S. Pavlov, PhD. 2000
So, the most important questions of training practice may be formulated in the following way:

1. What is a typical reaction of the athlete’s body on the loads used during training and competitive activity?
2. What level should the training loads be to provide a training effect?
3. What factors affect the ability of an athlete to adapt?
4. What signs and symptoms indicate a failure of the athlete’s adaptability?

To answer these questions, it’s necessary to clarify:

1. What are the physiological postulates of Selye's original findings?
2. How does new research data change these postulates?
2. THE GAS CONCEPT: KEY POINTS, CRITIQUE AND UPDATES

2.1. KEY POINTS OF SELYE’S EXPERIMENTAL FINDINGS

2.2. THEORETICAL CONCEPT OF GAS AND ITS CRITIQUE

2.3. GARKAVI’S UPDATES TO SELYE’S RESEARCHES DATA AND THEIR THEORETICAL MEANING
1°. The organism’s response to the sever damages of acute nocuous agents is independent of the nature of the damaging agent and represents a response to damage as such.

“...Experiments on rats show that if the organism is severely damaged by acute non-specific nocuous agents such as:
✓ exposure to cold,
✓ surgical injury, production of spinal shock (transition of the cord),
✓ excessive muscular exercise,
✓ intoxications with sub lethal doses of diverse drugs,
...a typical syndrome appears...the symptoms of which are independent of the nature of the damaging agent or the pharmacological type of the drug employed, and represent rather a response to damage as such.” (H.Selye, 1936)

The acute nocuous agents, having different nature provoked the same pathologic reaction which was manifested by adrenal enlargement, gastrointestinal ulceration, thymus involution and deviation from the normal level of the white blood cells counts (WBC):
- raising the leycocytes count (leukocytosis);
- decreasing the lymphocytes count (limphopenia);
- decreasing the eosinophiles count (eosinopenia).
2°. During the response to the influence of acute nocuous agent the organism develops resistance, which overcomes its normal level

Case 1° - initial injury with sub-lethal dose of drug

Case 2° - repetitive treatment with relatively small doses of drug
2°. During the response to the influence of acute nocuous agent the organism develops resistance, which overcomes its normal level

Case 1° - single injury with sub-lethal dose of noxious agent

“...6–48 hours after the initial injury, one observes rapid decrease in size of the thymus, spleen, lymph glands, and liver...We consider the first stage to be the expression of a general alarm of the organism when suddenly confronted with a critical situation, and therefore term it the "general alarm reaction." In the second stage, beginning 48 hours after the injury, the adrenals are greatly enlarged but regain their lipoid granules... . It would seem that the anterior pituitary ceases production of growth and gonadotropic hormones and prolactin in favor of increased elaboration of thyrotropic and adrenotropic principles, which may be regarded as more urgently needed in such emergencies.

According to A. Viru (1981), Alarm reaction includes two phases: Shock and Counter-shock. It seems that Selye, describing the second stage, referred to the Counter Shock phase of Alarm reaction.

“Counter-shock represents the transitional phase to the following resistance stage, which could be observed under the chronically acting agents having the lower magnitude (their magnitude level not overcome the capability of the organism’s defence systems”).

So, Resistance Stage occurs only in the Case 2°.
2°. During the response to the influence of acute nocuous agent the organism develops resistance, which overcomes its normal level.

Case 1° - single injury with sub-lethal dose of noxious agent

Alarm reaction is recognised as psycho-somatic flight-fight reaction of organism on a serious threat; it is not related to the phenomenon of Super-compensation, i.e. the phenomenon of restitution of exhausted substance (or energy) with over-reaching its initial level.

At the beginning of Alarm reaction, “the changes in endocrine system represent, per se, not a “call to arms”, but “call to disarmament”, because these changes lead to decreasing the activity of organism’s defence systems. … But how to explain why, after Alarm reaction, without any additional influence, the organism’s resistance increases? (Garkavi, 1977)

“That which does not kill us makes us stronger”?

Friedrich Nietzsche
According to L. Garkavi (1977), the cause of increasing the organism's resistance, after the strong injury with sub-lethal dose of nocuous agent, is the development of *protective inhibition* in CNS, which provokes decreasing the organism sensibility to the occurring damage.

The first impact with “adversity” resizes (downsizes) our perception of “adversity”

That which does not kill us make us not stronger, but less sensitive

2°. During the response to the influence of acute nocuous agent the organism develops resistance, which overcomes its normal level
If the treatment be continued with relatively small doses of the drug or relatively slight injuries, the animals will build up such resistance that in the later part of the second stage the appearance and function of their organs returns practically to normal”.

(H. Selye. 1936).

3°. The short term application of relatively small doses of a noxious agent allows the organism to recover after the damages produced by sub-lethal dose of this agent.

Case 2° - continuous application of relatively small doses of a noxious agent after initial injury with sub-lethal dose of this agent.

“...If the treatment be continued with relatively small doses of the drug or relatively slight injuries, the animals will build up such resistance that in the later part of the second stage the appearance and function of their organs returns practically to normal”.

(H. Selye. 1936).

That which make us stronger is not that which does kill us.
For every substance, small doses stimulate, moderate doses inhibit, large doses kill" (Arndt-Schulz rule, 1888)

Rudolf Arndt (1835 – 1900) was a German psychiatrist, an ardent advocate of homeopathy. He found similar results in his researches on the effects of low doses of drugs on animals. He claimed that the low doses of toxins in general produced stimulation of biological endpoints such as growth or fertility.

Hugo Paul Friedrich Schulz (1853 – 1932) was a German pharmacologist. His research of a phenomenon known as hormesis, showed that toxins can have the opposite effect in small doses than in large doses. He proved this in his experiments with chemical compounds on yeast cells.

...As a result of developing protection inhibition, the CNS sensibility decreases....

For this reason, the following stimuli are perceived by organism as the mild external influences, which stimulate increasing the organism resistance” (Garkavi, 1977)
4°. The long term treatment of organism with relatively small doses of nocuous agent leads to development of exhausting stage, which duration depends on the magnitude of said doses

Case 2° - continuous treatment with relatively small doses of noxious agent after initial injury with sub-lethal dose of this agent

“… with further continued treatment, after a period of one to three months (depending on the severity of the damaging agent), the animals lose their resistance and succumb with symptoms similar to those seen in the first stage” (H.Selye, 1936)

“Prolonged treatment by the same “dose” of damaging agent, bring to the “exhaustion phase”, which has the same symptoms as in the “alarm phase”. … The loss of acquired adaptation during the stage of exhaustion is difficult to explain but as a working hypothesis, it was assumed that every organism possesses a certain limited amount of “adaptation energy” and once this is consumed, the performance of adaptive processes is no longer possible “ (H.Selye, 1938).
5°. The organism became more resistant to the influence of a large “dose” of nocuous agents after its pre-treatment with relatively small, but progressively increasing, “doses” of this agent.

“The animals pre-treatment, starting with one quarter of the “full alarming dose” (which has been defined as the dose just sufficient to produce a marked alarm reaction within 48 hours after the beginning of the experiment)” and then by giving gradually increasing doses until the full alarming dose within 5 to 12 days, assures the increase of the animal resistance to the influence of damaging agent”.

“By giving gradually increasing doses of various alarming stimuli, one may raise the resistance of animals… rats pre-treated with a certain agent will resist such doses of this agent which would be fatal for not pre-treated controls”. (H.Selye, 1938)

That which make us stronger may be named “training”
6°. When the organism’s resistance to a particular stimulus increases, its resistance to some other stimuli of a different nature simultaneously decreases.

Case 1° - single initial injury with sub-lethal dose of drugs

“… During the Alarm reaction, the resistance of the organism is increased, not only to the stimulus with which the Alarm reaction had been elicited but also to agents of a different nature. However, during the second stage of the adaptation syndrome, this non-specific resistance vanishes rapidly at a time when the specific resistance to the agent with which the animal had been pretreated, is still very high.”

These findings are in accord with the conception of adaptation energy. Yet we must realize that this conception is quite contrary to common belief, since it is generally agreed that all vital processes are performed merely at the expense of the caloric energy of the ingested food. … The two most important facts capable of proving that such a principle is utilized during adaptation and that the organism possesses only a limited amount of this “adaptation energy” are that acquired adaptation vanishes after a certain time and that while an organism builds up resistance against a certain agent it loses much of its ability to resist agents of a different nature. “(H.Selye, 1938).
6°. When the organism’s resistance to a particular stimulus increases, simultaneously, its resistance to the other stimuli, of a different nature, decreases

Case 2° - continuous treatment with the same noxious agent increasing its dose from relatively small to sub-lethal

“...during adaptation to a certain stimulus the resistance to other stimuli decreases.

...rats pre-treated with a certain agent will resist such doses of this agent which would be fatal for not pre-treated controls. At the same time, their resistance to toxic doses of agents other than the been adapted decreases below the initial value. ...These findings are tentatively interpreted by the assumption that the resistance of the organism to various damaging stimuli is dependent on its adaptability. This adaptability is conceived to depend upon adaptation one to which they have energy of which the organism possesses only a limited amount, so that if it is used for adaptation to a certain stimuli will necessarily decrease.

We conclude that adaptation to any stimulus is always acquired at a cost, namely, at the cost of adaptation energy”. (H. Selye, 1938)

To became stronger, we must be focused on the limited number of objectives.
Stress has become such an ingrained part of our vocabulary and daily existence, that it is difficult to believe that our current use of the term originated only a little more than 50 years ago, when it was essentially "coined" by Hans Selye. (Paul J. Rosch)

In the 1920s and 1930s, the term "stress" was occasionally being used in biological and psychological circles to refer to a mental strain, unwelcome happening, or, more medically, a harmful environmental agent that could cause illness.

Most often, the term Stress was used to name a person’s physiological response to an internal or external stimulus that triggers the fight-or-flight response: our body’s primitive, automatic, inborn response that prepares the body to "fight" or "flee" from perceived attack, harm or threat to our survival.

Hans Selye coined the term “Stress” to name the effect of "acute non-specific noxious agents": “strong damaging factors”. After, he defined Stress as “a common denominator of all adaptive reactions of the body”. As a result, the term Stress started to be used to name the effect of any kind of body reaction on the change of external environment.
Selye has acknowledged the influence of Walter Cannon, who used the term Stress to refer to external factor that disrupted what he called **homeostasis**.

Homeostasis is dynamic equilibrium state of the organism’s internal environment; is also understood as the ability of the body to seek and maintain a condition of equilibrium or stability within its internal environment when dealing with external changes.

According to W. Cannon, the stress is stressful because it sharply disrupts dynamic equilibrium state of organism.

The concept of Homeostasis, or the Staying Power of the Body, helps us understand why “**various types of treatment and many, if not all, diseases have certain things in common, have certain non-specific, stereotyped features**” (Selye, 1956): because they are commonly perceived as the homeostasis disturbances.
Intoxication with sub lethal doses of diverse drugs, surgical injury, exposure to cold and excessive muscular exercise were “stressors” which provoked the Stress Syndrome in Selye’s experiments, because they sharply disrupted dynamic equilibrium state of the organism.
According to Selye, the three-stage organism's reaction on the influence of acute noxious agents, termed as “stress syndrome”, is universal: it occurs, in its more or less pronounced forms, in response to every “magnitude” of such influences.

Main part of Selye's followers accepted that the organism adaptation to each quality and each quantity of change in external environment is based on the adaptation to the Stress. However, it also became the main argument of the critique of GAS concept.
BERNARD GOLDSTONE
THE GENERAL PRACTITIONER AND THE GENERAL ADAPTATION SYNDROME
S.A. MEDICAL JOURNAL, 1952

“…Selye’s work is concerned with adaptation to gross stimuli. He calls such stimuli stressors. (Stress is the state produced by a stressor). The great merit of his work is that he showed that there is the same reaction to every sort of unfamiliar stressor. Selye’s General Adaptation Syndrome … is a ready-made mechanism to enable the individual to cope with all strange new severe stimuli; when the body learns how to cope with a specific stimulus, the G.A.S. is no longer essential to survival. …A continuous minor stimulus is easily countered with continuous adaptation.

…The G.A.S. bridges the gap until specific adaptation has been acquired. The G.A.S. is an abstraction; it is never seen in its pure form because it may be altered (conditioned) at any level in the long chain of its causal mechanism either by external conditioning (the particular nature of the stimulus) or by internal conditioning (biochemical values peculiar to the individual).”

“…Of course, the concept of stress is an abstraction; but so is that life, which could hardly be rejected as irrelevant to the study of biology. No one has study life in a pure, uncontaminated form.

…In other dimension, in time, the triphasic evolution of the stress response can be used as a measurable fact. All the changes just enumerated varied during the three phases of the G.A.S. in a characteristic and predictable manner. This variation of response during exposure to unvarying stressor made it possible to use the measurable indicators of stress (structural or chemical changes) for the appraisal of the evolution of the GAS in time.

…Stress is the common denominator of all adaptive reactions of the body.”

Hans Selye “The Stress of Life”, 1956
At the end of 60th, Russian scientists L. Garkavi, M. Ukolova and E.Kvakina had decided to complete the Selye’s researches and to verify the organism responds to the stimuli of different magnitudes.

The respond on the high level stimuli (the same, as those used in the experiments of Selye) was characterized by the classic stress reaction.
This is what Garkavi supposed would happen as the organism’s responds to the influences of stimuli having different magnitudes, according to Selye’s theory.
This is what Garkavi came up with as the organism’s responds to the influences of the stimuli having different magnitudes.
In the 1975, L. Garkavi, M. Ukolova and E.Kvakina established that medium and low influences bring an anti-stress adaptation reactions. These reactions enhance non-specific resistance of the human body to any damaging factors of the internal or external environment without energy losses in functional systems of the body. The reaction to the low level influences was named the “Training reaction”. The reaction to the medium level influences was named the “Activation reaction”.

“For every substance, small doses stimulate, moderate doses inhibit, large doses kill”
At the beginning of each of the three different reactions, the organism resistance initially decreases and than subsequently increases. The repetitive influences of high level impacts (stressors) bring about a decrease in the organism resistance; however, low and especially medium level impacts ("training" and "activation" reactions) bring about an increase in the organism’s resistance.

Schema of L. Garkavi, E. Kvakina and M. Ukolova (1975). Changing the organism resistance under the repetitive influences of the same damaging factors having three different “magnitude” of impacts:
- the high level impacts – “stress” reaction;
- medium level impacts – “activation” reaction
- low level impacts – “training” reaction.
The results of researches conducted by L Garkavi

In two equal groups of rates, affected by cancer, the first group was treated with the “full alarming dose”. The first group was healed after about 5 weeks. The other, control group was dead after approximately 7 weeks.

In two equal groups of rates, affected by cancer, the first group was treated with the percentage of “full alarming dose”, which induced the Activation reaction. The first group was healed after around 3 weeks. The other, control group, was dead after approximately 5 weeks.

In two equal groups of rates, affected by cancer, the first group was treated with the lower percentage of “full alarming dose”, which induced the Training reaction. The first group was healed after about 5 weeks. The other, control group was dead after approximately 7 weeks.
The first phase of the Stress reaction and anti-stress reactions is manifested by different characteristics of WBT counts and thymus mass changing.

According to H. Selye, the first phase of stress reaction (Alarm phase) is manifested by:

1) increase in the leucocytes count above the normal range in the blood,
2) decrease in the lymphocytes count in the blood,
3) decrease in the eosinophils count in the blood,
4) decrease in the thymus mass.

The leukocytes, lymphocytes, eosinophiles and neutrophiles number and the thymus weight during the first stages of the “training” reaction (1), the “activation” reaction (2) and the “stress” reaction (3). (L. Garkavi, E. Kvakina and M. Ukolova (1975)
2. The GAS Concept: Key Points, Critique and Updates

2.3. Garkavi’s Updates to Selye’s Researches Data and Their Theoretical Meaning

The results of researches conducted by L Garkavi

Calm Activation

High Activation

Over-activation

Stress reaction

Lymphocytes (%)

The upper half of the Normal Zone

The lower half of the Normal Zone

Mineralocorticoids

CNS excitement

Thymus mass

Thymus mass

Blood anti-coagulation system

Blood coagulation system

Sexual glands

CNS inhibition

Glycocorticoids

Thyroid gland mass

Adrenal glands mass

Blood anti-coagulation system

Blood coagulation system

Sexual glands

CNS inhibition

Glycocorticoids
Garkavi’s markers of non-specific reactions

<table>
<thead>
<tr>
<th></th>
<th>LEUKOCYTES (n x10⁹)</th>
<th>LYMPHOCYTES/LEUKOCYTES (%)</th>
<th>PMN NEUTROPHILES/LEUKOCYTES (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAINING REACTION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 - 6.5</td>
<td>20 - 27.5%</td>
<td>55 - 65%</td>
</tr>
<tr>
<td>ACTIVATION REACTION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CALM ACTIVATION</td>
<td>4 - 6.5</td>
<td>28 - 33.5%</td>
<td>47 - 55%</td>
</tr>
<tr>
<td>HIGH ACTIVATION</td>
<td>4 - 6</td>
<td>More than 33.5 until 40 - 45%</td>
<td>less than 50%</td>
</tr>
<tr>
<td>OVER-ACTIVATION</td>
<td>In the limits of norm</td>
<td>More than 40 - 45%</td>
<td>less than 50%</td>
</tr>
<tr>
<td>STRESS REACTION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACUTE STRESS</td>
<td>More than 7</td>
<td>Less than 20%</td>
<td>More than 70%</td>
</tr>
<tr>
<td>CHRONIC STRESS</td>
<td>Various</td>
<td>Less than 20%</td>
<td>More than 70%</td>
</tr>
</tbody>
</table>
Periodical repetition of the same adaptation reactions when the magnitude of external influence (the dose of agent) increases for 10-20%.
Garkavi’s markers of non-specific reactions

<table>
<thead>
<tr>
<th></th>
<th>Basophils</th>
<th>Eosinophils</th>
<th>Band Neutrophils</th>
<th>PMN Neutrophils</th>
<th>Lymphocytes</th>
<th>Monocytes</th>
<th>Normal Form of Reaction</th>
<th>Reaction with Signs of Tension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training Reaction</td>
<td>0-1</td>
<td>1-4</td>
<td>1-5</td>
<td>54-73</td>
<td>20-27</td>
<td>4-7</td>
<td>0.27-0.52</td>
<td>0.26-0.27 0.52-1.17</td>
</tr>
<tr>
<td>Activation Reaction</td>
<td>0-1</td>
<td>1-4</td>
<td>1-4</td>
<td>40-65</td>
<td>28-45</td>
<td>4-6.5</td>
<td>0.45-1.12</td>
<td>0.44-0.45 1.12-3.0</td>
</tr>
<tr>
<td>Calm Activation</td>
<td>0-1</td>
<td>1-4</td>
<td>1-4</td>
<td>49-65</td>
<td>28-33.5</td>
<td>4-6.5</td>
<td>0.45-0.64</td>
<td>0.44-0.45 0.64-1.43</td>
</tr>
<tr>
<td>High Activation</td>
<td>0-1</td>
<td>1-4</td>
<td>1-4</td>
<td>40-49</td>
<td>34-40 (45)</td>
<td>4.6</td>
<td>0.7-1.12</td>
<td>0.57-0.7 1.12-3.0</td>
</tr>
<tr>
<td>Stress Reaction</td>
<td>0-1</td>
<td>0-4</td>
<td>1-7</td>
<td>62-82</td>
<td>6-19.5</td>
<td>4-8</td>
<td>0.07-0.31</td>
<td>0.31-0.58</td>
</tr>
</tbody>
</table>
Garkavi’s group made important updates to Selye’s research that were in contrast to his theoretical postulates. It was shown that the General Adaptation Syndrome is not the common denominator of all adaptive reactions of the body:

- The Stress syndrome is only the organism reaction, an unwelcome responds to a sharp environmental change.
- The organism adaptation to the lower level environmental changes, which is the main mechanism of its adaptation during life, is induced by other non-specific reactions, having different physiological characteristics.

1. В основе приспособительной деятельности организма лежит количественно-качественный принцип: в ответ на действие раздражителей, различных по количеству, т.е. по степени биологической активности, закономерно развиваются различные по качеству адаптационные реакции организма. Общие приспособительные реакции являются неспецифическими, зависящими от количества действующего фактора, а специфика, качество каждого раздражителя накладывается на общий неспецифический фон.
3. APPLYING THE GAS CONCEPT IN SPORT TRAINING

3.1. What is a typical reaction of the athlete’s body on the loads used during training and competitive activity?

3.2. What level the training loads should have to provide a training effect?

3.3. What factors affect the ability of an athlete to adapt?

3.4. What signs and symptoms are indicative of a failure of the athlete’s adaptability?
Applying the GAS concept in sport training

1. What is a typical reaction of the athlete’s body on the loads used during training and competitive activity?

2. What level should the training loads be to provide a training effect?

3. What factors affect the ability of an athlete to adapt?

4. What signs and symptoms indicate a failure of the athlete’s adaptability?
W. Winternitz (1893) and Е. Willebrand (1903) discovered the leukocytosis after the intense muscular activity. He theorized that it is a result of the organism’s inundation by the products of metabolism (the protein depletion); increasing of the leukocytes number assures an increase in the organism defence from its inundation. This idea was confirmed by the experimentally obtained fact that the level of increase of leucocytes depends on the intensity (the power output) of muscular work.

The changes in white blood cells counts (WBC) after the muscular work depend on the amount of this work.

E. Grawitz (1910) named this kind of leycocytosis miogenic. He theorized that it is a result of the organism’s inundation by the products of metabolism (the protein depletion); increasing of the leukocytes number assures an increase in the organism defence from its inundation. This idea was confirmed by the experimentally obtained fact that the level of increase of leucocytes depends on the intensity (the power output) of muscular work.
A.Egorov (1926) described three different types of white blood cells reaction to different "amounts" of muscular work (three different levels of its heaviness): only the reaction to heavy work was similar to the Alarm reaction of Stress syndrome.

The WBC changes, equal to the Alarm phase of Stress, occur only after the heavy sport workouts.

<table>
<thead>
<tr>
<th>EXTERNAL INFLUENCE</th>
<th>TYPOLOGY OF REACTION</th>
<th>CHANGES IN THE WHITE BLOOD CELLS NUMBERS</th>
<th>LEUKOCYTES</th>
<th>LIMPHOCITES</th>
<th>EOSINOFILOCITES</th>
<th>NETROFILOCYTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>NON-SPECIFIC STRESSOR</td>
<td>ALARM REACTION</td>
<td></td>
<td>High</td>
<td>Decrease</td>
<td>Very low decrease</td>
<td>Increase</td>
</tr>
<tr>
<td>RELATIVELY SMALL AMOUNT OF WORK</td>
<td>LEUKOCYTARIAN REACTION</td>
<td></td>
<td>Increase</td>
<td>Increase</td>
<td>Decrease</td>
<td>Decrease</td>
</tr>
<tr>
<td>RELATIVELY LARGE AMOUNT OF WORK</td>
<td>NEUTROFIelan REACTION</td>
<td></td>
<td>Little increase</td>
<td>Decrease</td>
<td>Decrease</td>
<td>Increase</td>
</tr>
<tr>
<td>HEAVY WORK</td>
<td>INTOXICATION REACTION</td>
<td></td>
<td>High increase</td>
<td>Decrease</td>
<td>Elmination</td>
<td>Increase</td>
</tr>
<tr>
<td></td>
<td>REGENERATIVE VARIANT</td>
<td></td>
<td>Very little increase</td>
<td>Increase</td>
<td>Increase</td>
<td>Rapid increase</td>
</tr>
<tr>
<td></td>
<td>DEGENERATIVE VARIANT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Activation reaction most frequently occurs during sport training; the Stress reaction is very rare.

Kusnetzova T., *Control of the body tolerance to the training loads in sport swimming on a base of white blood system markers*. PhD dissertation, 1989
The High Activation reaction is most frequent during sport training, however, almost in half of the cases it occurs with signs of tension.

Kusnetzova T. *Control of the body tolerance to the training loads in sport swimming on a base of white blood system markers*. PhD dissertation, 1989.
3. APPLYING THE GAS CONCEPT IN SPORT TRAINING

3.2. WHAT LEVEL SHOULD THE TRAINING LOADS BE TO PROVIDE A TRAINING EFFECT?

Specific mechanism of adaptation to intensive muscular work

- **Training work-out**
 - **Body’s hyperfunction**
 - **Repetitive work-recovery phases**
 - **Performance increasing**

“External” load

“Internal” load

Main aims of training load flows

- **Strength**
- **Speed**
- **Aerobic Endurance**
- **Mitochondrial protein synthesis**
- **Sarcoplasmatic reticulum protein synthesis**
- **Synthesis of proteins with buffer capacity and isoferment resistance Ph decrease**

Specific proteins depletion

- Increasing the specific proteins contents in working organs thanks to the phenomenon of Supercompensation

- Specific morphological-functional restructuring the athlete’s body
Specific mechanism of adaptation to intensive muscular work

- **Catabolism**: The set of metabolic pathways that break down molecules into smaller units and release energy.
 - The proteins depletion in the tissues of organs involved in the work and accumulation of metabolites.

- **Anabolism**: The set of metabolic pathways that construct molecules from smaller units.
 - The new proteins re-synthesis through the use of metabolites as the sources that occurs with redundant anabolism: overreaching their contents in the tissues of worked organs.

Main aims of training load flows

- **Strength**
- **Speed**
- **Aerobic Endurance**
- **Speed Endurance**

Contractile protein synthesis

Sarcoplasmatic reticulum protein synthesis

Mitocondrial protein synthesis

Synthesis of proteins with buffer capacity and isoferment resistance Ph decrease

3. APPLYING THE GAS CONCEPT IN SPORT TRAINING

3.2. **WHAT LEVEL SHOULD THE TRAINING LOADS BE TO PROVIDE A TRAINING EFFECT?**
3. APPLYING THE GAS CONCEPT IN SPORT TRAINING

3.2. WHAT LEVEL SHOULD THE TRAINING LOADS BE TO PROVIDE A TRAINING EFFECT?

Non-specific mechanism of adaptation to intensive muscular work

Training loads deplete proteins in the tissues of organs involved in the work; accumulation of metabolites provokes the change in the body internal environment: **homeostasis disturbance**

The **homeostasis re-establishing** is assured by elimination of metabolites through their use as the sources for the new proteins re-synthesis, which occurs by overreaching their contents in the tissues of worked organs.

The level of homeostasis disturbance determines the type of non-specific reactions and the body ability to give an adaptive response to the training load (the body’s adaptation ability):

- Training reaction assures the “training” of the body’s adaptation ability;
- Activation reaction assures the “activation” of the body’s adaptation ability (quite, high or over-activation);
- Stress reaction provokes the inhibition of the body’s adaptation ability, related to the necessity to mobilize all physiological system to the body defence.
Non-specific mechanism of adaptation to intensive muscular work

According to A. Viru, “important condition of ensuring the training effect is increasing the level of homeostatic regulation which brings to mobilization of the body’s energetic and plastic resources”; this condition may be assured if the training loads will have the stress influence. The stress influence is understood as such an influence that is able to activate the non-specific mechanism of adaptation.

At the same time, according to Selye, every kind of external influence is able to activate the non-specific mechanism of adaptation, provoking the stress reaction, which quantitative expression is related to the level of homeostasis disturbance.

What is not clear, however, is what level of stressor is able to assure the mobilization of the body’s energetic and plastic resources.
3. APPLYING THE GAS CONCEPT IN SPORT TRAINING

3.2. WHAT LEVEL SHOULD THE TRAINING LOADS BE TO PROVIDE A TRAINING EFFECT?

<table>
<thead>
<tr>
<th>BIOLOGICAL MEANING OF RESPONSE</th>
<th>METABOLIC PROCESSES STATE</th>
<th>ENERGY EXCHANGE</th>
<th>WORKABILITY STATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAINING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cutting off nonessential, weak repetitive stimuli by developing a protective inhibition in the brain</td>
<td>Not high with prevalence of anabolic processes.</td>
<td>Energy substrate accumulation exceeds energy expenditure, thus energy is stored.</td>
<td>Workability level is low in terms of operation speed but it is good in terms of working time.</td>
</tr>
<tr>
<td>CALM ACTIVATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increasing activity of control systems of the body</td>
<td>High with prevalence of anabolic processes.</td>
<td>High-speed metabolism of energy-supplying substrates, well-balanced by their expenditure and replenishment.</td>
<td>Workability level is high both in terms of precise execution, operation speed and duration of working.</td>
</tr>
<tr>
<td>HIGH ACTIVATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increasing the activity of control and protective systems of the body</td>
<td>Very high. with a significant prevalence of anabolic processes</td>
<td>High-speed metabolism of energy-supplying substrates, well-balanced by their expenditure and replenishment.</td>
<td>Workability level is high, especially in terms of precise execution and operation speed and some lower in terms of duration of working.</td>
</tr>
<tr>
<td>OVER-ACTIVATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>An attempt to retain the activation response without falling into stress.</td>
<td>Very high and tense without prevalence</td>
<td>Expenditure of energy-supplying substrates grows and their replenishment gradually lags behind.</td>
<td>Workability level is high, however there may be breakdowns activity.</td>
</tr>
<tr>
<td>STRESS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevention of too high a reaction of the body that could result in death.</td>
<td>Very high with prevalence of catabolic processes.</td>
<td>Expenditure of energy-supplying substrates is sharply increased, their replenishment is reduced. Increasing the proportion of glycolytic processes.</td>
<td>Workability level, in terms of operation speed, can be high at the beginning, but then it falls. Workability in terms of accuracy and duration of working is decreased.</td>
</tr>
</tbody>
</table>
Mobilization of the body’s energetic and plastic resources occurs already during the Training reaction: the metabolic processes activity is not high, but consists mostly of anabolic processes. To provide the highest training effect, training load should guarantee the development of a High Activation reaction and not surpass the level of an Over-Activation reaction.
When the training load impact provokes the Over-Activation reaction, the prevalence of anabolic process switches to catabolic. This change indicates the Threshold of adaptability has been surpassed, which is also related to critical level of Homeostasis disturbance.
Similarly, during execution of a training exercise, surpassing the anaerobic threshold brings about glycolysis and the subsequent decrease in the body's workability. During the training process, reaching beyond a certain level of training load initiates stress syndrome and a consequent decrease in the body's adaptability.
Similarly as, during execution of training exercise, the overcoming the anaerobic threshold brings to development of glycolysis and the consequent decreasing the body workability, also, during the training process, the overcoming of certain level of training loading brings to development of stress syndrome and the consequent decreasing the body adaptability.

The body’s adaptability state

- **Work loading**
 - Excessive
 - High
 - Medium
 - Low

Allostatic load

- **Allostatic overload**
 - Stress state
 - Over-Activation
 - High Activation
 - Quiet Activation

Threshold of adaptability

3.3. What factors affect the ability of an athlete to adapt?
Accumulation of allostatic load, which supersedes the critical level of homeostatic disturbance, results in activation of the emergency systems: it is defined as **allostatic overload**.
The human body cannot maintain such allostatic load for very long without consequences. In the long run, allostatic changes may fail to be adaptive as the maintenance of allostasis changes over a long period.
In the long run, allostatic changes may fail to be adaptive because they exhaust the hypothalamic-pituitary-adrenal axis (HPA axis) function.

The phases of the changes of the noradrenaline system’s state under the influence of prolonged muscular work (Kassil, 1978):

- **the immediate activation phase** - a ‘strengthened flow’ of adrenaline in the blood immediately after beginning the workout; a lowering of the contents in the adrenal ganglions is absent.

- **the stable and prolonged activation phase** - an increasing upsurge of adrenaline secretion in the blood with the gradual lowering of the content in the adrenal ganglions.

- **the function exhaustion phase** - the lowering of noradrenalin activity, externally evident in that there is a drop in the level of the athlete’s work ability.
The lymphocyte percentage in the white blood count is used to identify the state of non-specific adaptive response as shown in the table below.

Lymphocyte percentage in White Blood Count

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Type if non specific adaptive response</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stress</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3-5</td>
<td><29.5</td>
</tr>
<tr>
<td>6-9</td>
<td><25</td>
</tr>
<tr>
<td>10-13</td>
<td><23</td>
</tr>
<tr>
<td>14-16</td>
<td><20.5</td>
</tr>
<tr>
<td>Adults</td>
<td><20</td>
</tr>
</tbody>
</table>

The body reactivity level, at which a non-specific adaptive response develops, is reliably identified by the tension degree in the white blood count, as specified in the table below.

Tension Degree in the White Blood Count

<table>
<thead>
<tr>
<th>Blood cells</th>
<th>Tension Degree</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monocytes</td>
<td></td>
<td>5-7</td>
<td>7.5-8.5</td>
<td>9.0-11.0</td>
<td>11.5-15.0</td>
<td>>15.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4-4.5</td>
<td>4.5</td>
<td>3.0-3.5</td>
<td>2.0-2.5</td>
<td><2.0</td>
</tr>
<tr>
<td>Eosinocytes</td>
<td></td>
<td>1-4.5</td>
<td>5.0-6.0</td>
<td>6.5-8.5</td>
<td>9.0-15.0</td>
<td>>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basophils</td>
<td></td>
<td>0-0.5</td>
<td>1</td>
<td>1.5</td>
<td>2.0-3.0</td>
<td>>15.0</td>
</tr>
<tr>
<td>Stab neutrophils</td>
<td></td>
<td>3-5.5</td>
<td>6.0-7.0</td>
<td>7.5-9.0</td>
<td>9.5-15.0</td>
<td>>10x109</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-2.5</td>
<td>2.25</td>
<td>1.0-1.5</td>
<td>0.5</td>
<td><2.9x109</td>
</tr>
<tr>
<td>Total leucocytes</td>
<td></td>
<td>4-6x 109</td>
<td>6.1-6.5x109</td>
<td>6.6-7.9x109</td>
<td>8.0-10x109</td>
<td>More than 2 plasma cells or neocytes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.7-4.0 x 109</td>
<td>3.2-3.6 x 109</td>
<td>2.9-3.1 x 109</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1-2 plasma cells</td>
<td></td>
</tr>
<tr>
<td>Toxic neutrophils</td>
<td></td>
<td>No</td>
<td>No</td>
<td>In isolated cells</td>
<td>In half of cells</td>
<td>Almost in all cells</td>
</tr>
</tbody>
</table>

Every type of non-specific reaction is characterised by specific changes in the psycho-emotional state and the workability state.

<table>
<thead>
<tr>
<th>Psycho-emotional state</th>
<th>Workability state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>Calmness, some inertia (moderate activity), low anxiety, low aggressiveness,</td>
</tr>
<tr>
<td></td>
<td>satisfactory sleep and appetite.</td>
</tr>
<tr>
<td>Calm Activation</td>
<td>High activity, calmness, good mood and low aggressiveness.</td>
</tr>
<tr>
<td>High Activation</td>
<td>Very high activity (thirst for action), optimism, excellent mood,</td>
</tr>
<tr>
<td></td>
<td>sometimes even with slight euphoria (although without losing the ability to correctly appraise a situation), excellent sleep and appetite.</td>
</tr>
<tr>
<td>Over-activation</td>
<td>High activity, shortness of temper, aggressiveness,</td>
</tr>
<tr>
<td></td>
<td>disturbed sleep but without loss of appetite.</td>
</tr>
<tr>
<td>Stress</td>
<td>Depression, low spirits, sometimes aggressiveness,</td>
</tr>
<tr>
<td></td>
<td>high anxiety, abnormal sleep and appetite.</td>
</tr>
</tbody>
</table>

In stress conditions, the athlete is able to obtain the highest level of power output in competition exercise, but could have coordination difficulties during its execution.

<table>
<thead>
<tr>
<th>Occurrence frequency of adaptive reaction</th>
<th>Training reaction</th>
<th>Activation reaction</th>
<th>Stress reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25%</td>
<td>22,5%</td>
<td>42,5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Features of the dance figures execution</th>
<th>Coordination level</th>
<th>High</th>
<th>High</th>
<th>Middle</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Speed level</td>
<td>Relatively low</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>General emotional background</th>
<th>Middle</th>
<th>Positive</th>
<th>Variable</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>The rate of recovery</td>
<td>Middle</td>
<td>High</td>
<td>Variable</td>
<td>Variable</td>
</tr>
</tbody>
</table>

The features of non-specific adaptive reactions on the training workouts in the sport dancers during competition period.

Nikolaeva E.P., 2000
The mind, once expanded to the dimensions of larger ideas, never returns to its original size.

O.W. Holmes

Thank you for your attention