ENERGY SYSTEM INTERACTION IN TEAM-SPORT ATHLETES

An examination of VO_{2} peak, O_{2} kinetics, and their advocacy for a new general preparation model

Ben Peterson

Ph.D. Candidate, CSCS
University of Minnesota

A CALL FOR CHANGE

- How we think about and talk about energy metabolism is wrong
- Too often we think of team-sport athletes as "anaerobic" athletes
- Could not be further from the truth!
- The On/Off Chart
- System runs out of...
- Lactic/Alactic or Aerobic/ Anaerobic
- Team-sport requires a blend of metabolic training to maximize performance
- Team-sport metabolism $=$ Repeated Sprint Ability (RSA)
- System is built around aerobic capacity

Fig. 2. Estimated energy system contribution of a 3-second sprint. ${ }^{[24,29,30,33,34]}$ ATP = adenosine triphosphate; $\mathbf{P C r}=$ phosphocreatine.

REPEATED SPRINT ABILITY

Aerobic Metabolism Effect on RSA:

- Increase aerobic energy contribution during maximal sprint bouts
- Total blood flow to muscle
- Heart
- Lungs
- Oxygen uptake $\left(\mathrm{VO}_{2}\right)$ kinetics
- O_{2} extraction from arterial blood
- Increase fast phase of PCr resynthesis
- Enhance the clearance rate of metabolite $\left(\mathrm{H}^{+} ; \mathrm{P}_{\mathrm{i}}\right)$; Speed recovery between work bouts
- Slow Phase PCr
- Glycogenolysis

REPEATED SPRINT ABILITY

CONTROVERSY AROUND VO_{2} PEAK / RSA RELATIONSHIP

- Despite all this evidence - all these connections inferring a tightly regulate, dynamic, integrated system controversy remained
- VO_{2} peak has been shown to correlate with RSA, ranging from $r=-0.50$ to -0.83
- McMahon \& Jenkins, 2002; Spencer \& Katz, 1991; Dupont et al., 2005; Gastin, 201 O; Bishop \& Edge, 2006; Tomlin \& Wenger, 2006; Westerblad et al., 2006
- Researchers have found non-significant correlations (-0.35 $<r<-0.46$)
- Aziz, Chia \& Teh, 2000; Bishop \& Spencer, 2004; Wadley \& LeRossignol, 1998; Carey et al., 2007

Is there, or isn't there?

CONTROVERSY AROUND VO_{2} PEAK / RSA RELATIONSHIP

Deficiencies of Current Research:

- Repeated Sprint Ability: Short duration sprints (<10 seconds), interspersed with short (<60 seconds) passive or active recovery periods
- Wide range of testing parameters, all claiming to evaluate RSA performance
- 2×30 sec bike sprint with 4 min recovery
- 6×4 sec sprint with 2 min recovery (football)
- 5×5 sec sprint with 30 sec recovery (rugby)
- $12 \times 20 \mathrm{~m}$ sprint with 20 sec recovery (soccer)
- Studies try to write one prescription; lack defining sport-specific work-to-rest ratio

CONTROVERSY AROUND RELATIONSHIP

Deficiencies of Current Research (con't):

- Testing-modalities are significantly different:
- Example: Hockey Players
- Bike: $43.6 \pm 0.7 \mathrm{~mL} / \mathrm{kg}$ vs On-Ice: $46.9 \pm 1.0 \mathrm{~mL} / \mathrm{kg}$ *
- Treadmill Run: $66.9 \pm 4.9 \mathrm{~mL} / \mathrm{kg}$

Continuous Skating Treadmill: $62.86 \pm 7.8 \mathrm{~mL} / \mathrm{kg}$ Discontinuous Skating Treadmill: $60.8 \pm 6.3 \mathrm{~mL} / \mathrm{kg}^{*}$

- Current testing protocols only employ straight ahead running
- Small Sample Size $(\mathrm{n}<15)$

U OF M STUDY

Study eliminated shortfalls of the current research in three ways:
I) Recruited a more complete sample of the population
2) Account for task-specificity by obtaining players' VO_{2} peak on a skating treadmill using a graded exercise test
3) Evaluate RSA using an on-ice test, developed to mimic the motor patterns typically performed by hockey players during competition using ecologically significant parameters

Hypothesis:

Players with a higher aerobic capacity (VO_{2} peak) will exhibit less fatigue during an on-ice repeated shift test than those with lower levels.

U OF M STUDY

Methods:

- 46 male college aged (I 8-24 years) hockey players
- Each participant completed:
- Hydrostatic Weighing
- Graded exercise test on a skate treadmill (VO_{2} peak)
- The Peterson on-ice repeated shift test

Measures:

- Body Composition
- Aerobic Capacity $\left(\mathrm{VO}_{2}\right.$ peak)
- Fatigue (\% decrement score)
$\%$ dec $=(100 \times($ Total sprint time \div Ideal Sprint Time $))-100$
*Total Sprint Time $=$ Sum of sprint times from all trials
**Ideal Sprint Time $=$ Fastest sprint time multiplied by number of trials.

PETERSON ON-ICE REPEATED SHIFTTEST

8 maximal sprints (approx. 23 seconds); 90 seconds rest between bouts

U OF M STUDY RESULTS

R_{2} Linear $=0.097$

- VO_{2} peak significantly correlated to Second Gate Decrement (\%)
- Aerobic contribution during shift
- VO_{2} peak not significantly correlated to First Gate orTotal Course Decrement (\%)
- PCr pathway robust against fatigue
- Recovery > 21 seconds
- First Gate approx. I0-1 I seconds maximal output

Relative VO_{2} peak $(\mathrm{ml} / \mathrm{kg} / \mathrm{min})$	-.114 $\mathrm{p}=0.458$	-.311 $\mathbf{p = 0 . 0 3 8}$	-.170 Absolute VO_{2} peak $(\mathrm{ml} / \mathrm{min})$ $\mathrm{p}=0.263$
Final Stage	-.080	-.344	$\mathbf{- . 3 5 4}$
Completed	$\mathbf{p = 0 . 0 1 7}$	$\mathrm{p}=0.021$	-.461 $\mathbf{p}=\mathbf{0 . 0 0 1}$
$\mathbf{p = 0 . 2 0 4}$			

Is that it?

$\uparrow \mathrm{VO}_{2}$ peak $=\downarrow$ Fatigue $=\uparrow$ Performance

Of course not!

UNDERSTANDING METABOLIC RESPONSETO EXERCISE

Gas Exchange Threshold (GET) Method:

- Allows for a better "dynamic" understanding
- Uses intersection point to estimate ventilatory threshold

Positives:

- Gives a real time view of energy system integration
- Allows for interpretation efficiency at differing work loads
- Enables a coach to identify weak links in energy system chain

METABOLIC RESPONSETO EXERCISE

METABOLIC RESPONSETO EXERCISE

‘ANAERロBIC' ATHLETE

This athlete has a...

- Low sub ventilatory work capacity
- Average contractile efficiency
- Average stroke volume

This athlete will...

- Perform well at high intensity, short duration activity (non-repetitive)
- Slow to fatigue at outputs above ventilatory threshold
- Have high anaerobic power output
- Take long periods of time ($>5 \mathrm{~min}$) to recover from maximal exertion bouts

METABOLIC RESPONSETO EXERCISE

'AERロbic' Athlete
This athlete has...

- High sub ventilatory work capacity
- Good contractile efficiency of the heart
- Large stroke volume
- Poor resistance to fatigue

This athlete will...

- Perform well at long distance, low intensity activity
- Fatigue quickly at outputs above ventilatory threshold
- Have low anaerobic power output
- Recover quickly after maximal exertion $\left(\mathrm{O}_{2}\right.$ off-kinetics)

METABOLIC RESPONSETO EXERCISE

TEAM-SPロRT ATHLETE

- No one I am aware of has ever looked at a "typical" GET profile for team-sport athletes
- How do the metabolic pathways of these athletes work to meet energy demand?

METABOLIC RESPONSE TO REPEATED MAXIMAL BOUTS

"Scientific research consists of seeing what everyone else has seen, but thinking what no one else has thought."

- Albert Szent-Gyorgyi
- Players with different VO_{2} peak's had same fatigue score
- Outliers?
- Skating Efficiency?
- 5 guys with same fatigue index
- Fatigue: 6\%
- $V O_{2}$ peak range: 46.8 to 64.4
- Had the idea to look at GET graph's
- Would not see this on V-Slope graph
- Found discrepancies in metabolic output at different intensity levels
- SubVTWork Capacity
- Maximal Work Capacity

METABOLIC RESPONSE (GET)

个 - Aerobic Base $=1: 57$

- Ventilatory Threshold $=8: 36$
- VO_{2} peak $(\mathrm{min})=8: 50$
- Total Time (Efficiency) $=10: 03$
- VO_{2} peak $=54.9 \mathrm{ml} / \mathrm{kg} / \mathrm{min}$
- Fatigue Index = 6\%

WHAT DOES THIS MEAN?

- No standard GET for team-sport athletes
- Implies that every aspect of metabolic profile contributes to RSA
- Athlete's metabolic system can adapt in multiple ways to meet energy demand
- Identifying weak link in athletes metabolic chain could lead to improved performance (RSA)

- Different stimulus required to target each component (pathway) of metabolism
- Not targeting specific pathway!
- Training efficiency at different levels of work output - integration

What would happen if an athlete had it all? A good base, a high VT , and a large maximal work capacity?

IDEAL TEAM-Spart Athlete

How would you train to achieve that?

CURRENT GENERAL PREPARATION PHASE (GPP) MODEL

What Coaches Agreed On:

- Goal:
- Develop Oxidative Capacity
- High Volume

What Coaches Disagreed On:

- Block duration
- 2 to 6 weeks
- Intensity:
- Heart rate at work and rest
- Duration:
- 30 to 90 minutes
- Loading:
- 30-60\% I-RM
- Method of application:
- Cardio
- Complexes
- Circuits
- Bodybuilding

What if there was a better way?

- Pair the application of volume with a scientific method that maximizes adaptation in a short amount of time
"Insanity: doing the same thing over and over again and expecting different results."

GPP RE-INVENTED

- What we know, what I have found, advocates for a multi-stage GPP approach
- Introducing the P.C.S.P. Method
- Stands for Push - Climb - Stretch - Pull
- Develops entire metabolic system, enabling maximal work output and enhanced recovery during repeated sprint bouts
- Optimizes energy pathway integration in team-sport athletes

GPP RE-INVENTED

Block I

Goal:

- General Work Capacity
- Improve sub VT work capacity
- Increase Ventilatory Threshold
- Raise CO_{2} Limit and improves anaerobic work capacity
- Increase VO_{2} peak

Physiological Focus:

- Central and peripheral cardiovascular structure
- Heart
- Lungs
- Capillaries

Duration:

Block II

Goal:

- VO_{2} Kinetics
- Increase rate of O_{2} response from rest to maximal effort
- Improve coordination/integration of metabolic response
Physiological Focus:
- Peripheral and localized muscular structures
- Increase mitochondrial density
- Rate of O_{2} extraction
- Increase levels of rate limiting enzymes
- Ex. Creatine Kinase

Duration:

- 2 to 3 weeks
- I to 3 Weeks

P.C.S.P. METHOD:

BLOCK I

METABOLIC PUSH

- Less CO_{2} (ml/min) exhaled than at previous equivalent rates of O_{2} consumption
- More efficient utilizing O_{2} for energy production
- Places less stress on glycolytic pathway during high intensity, repeated exercise

Training Parameters

- Intensity:
- Aerobic base pace
- 65 to 70\% heart rate max
(covers 85% of athletes)
- Duration:
- Continuous
- 20 to 45 minutes
- Mode (Weight Training):
- Circuit Training
- Unilateral movements
- Pace dictated by HR
- Alternate compound/ isolation
- Mode (Conditioning):*
- Rowing
- Running
- Biking
* For some larger athletes this may be walking on a treadmill (i.e. Football Lineman)

METABOLIC CLIMB

Training Parameters

- Intensity:
- VentilatoryThreshold
- 80 to 85% heart rate max
- Duration:
- Long Intervals
- 6 to 8 minutes @VT/2-3 minutes at $A B(65 \% H R)$
- Repeat 2-4 times
- Mode (Weight Training):
- Isometric Circuit Training
- 65-70\% I-RM
- 30-second sets
- Mode (Conditioning):
- Rowing
- Running
- Biking

- Able to perform work at higher intensities without fatigue (assuming glycogen stores sufficient)
- Reduces negative effect of active recovery
- Onset of fatigue during high intensity, repeated exercise is delayed; faster recovery between bouts

METABOLIC STRETCH

- Improving the aerobic capacity $\left(\mathrm{VO}_{2}\right.$ peak $)$
- Less metabolite accumulated during high-intensity exercise
- Improves efficiency of system, clearing metabolite during maximal exercise; reduced fatigue

Training Parameters

- Intensity:
- $V O_{2}$ peak
- 95 to 100\% heart rate max
- Duration:
- Short Intervals
- 2 to 4 minutes @ $V O_{2}$ peak/

I-3 minutes at AB (65\% HR)

- Repeat 3-4 times
- Mode (Weight Training):
- Escalating Density Training (EDT)
- Compound Movements
- Active metabolic recovery
- Mode (Conditioning):
- Game Speed conditioning*
- Plate Circuits*
- Running

METABOLIC PULL

Training Parameters

- Intensity:
- Maximal Effort (Sprint)
- Duration:
- 10 to 60 seconds
- 100 to 400 m sprints
- Work : Rest Ratio $=1: 4$
- 4 to 10 reps
- Mode (Weight Training):
- Isometric Circuits
- Maximal Effort
- I0-second sets
- Oscillatory Lifting Circuits
- 65-70\% I-RM
- 10 to 30-second sets
- Mode (Conditioning):
- Sprinting

- Improves overall work capacity; significantly greater improvement at high work intensities ($\geq \mathrm{VO}_{2}$ peak)
- Delays onset of metabolite accumulation; Ventilatory Threshold
- Improved intensity tolerance

PCSP Block I

- Goal: Improve general work capacity
- Model: Modified Undulated
- Duration: I to 3 weeks

	Day 1	Day 2	Day 3
3-Day Model	Climb	Stretch	Push

	Day 1	Day 2	Day 3	Day 4
4-Day Model	Climb	Stretch	Stretch	Push

$\uparrow \vee \mathrm{O}_{2}$ peak $+\uparrow \mathrm{V} \top+\uparrow \mathrm{CO}_{2}$ Limit $=\uparrow$ Work Capacity $+\downarrow$ Fatigue $=\uparrow$ Performance

Nope, but getting close!

METABOLIC RESPONSETO EXERCISE

Bishop and Spencer (2004)

- Compared two groups (team-sport athletes versus endurance-trained athletes) who were homogenous with respect to VO_{2} peak
- Found that total work and power decrement in RSA test were higher for team-sport athletes

Glaister et al. (2007)

- Found 6 weeks of endurance training (70% of VO_{2} peak) resulted in a 5.3% increase in VO_{2} peak
- No significant effect on measures of fatigue during an RSA test (20×5 second sprints with 10 seconds passive recovery)
- Suggests that factors in addition to VO_{2} peak are important

Fatigue to RSA performance

$\mathrm{VO}_{2} \mathrm{KINETICS}$ (EFFICIENCY)

$\mathrm{VO}_{2} \mathrm{KINETICS}$

Training Goals:

- Increase slope of the line for fast component
- Decrease amplitude of slow component; improve efficiency at high work rates

DO VO_{2} KINETICS MATTER?

Rampinini et al. (2009)
Table 2. Correlation coefficients between repeated-sprint ability test scores ($\mathrm{RSA}_{\text {best }}, \mathrm{RSA}_{\text {mean }}$, and $\mathrm{RSA}_{\text {dec }}$) and physiological responses to high-intensity, intermittent test and cardiorespiratory measurements ($N=23$).
$\begin{array}{lllll}\mathrm{HIT}_{\left[\mathrm{H}^{+}\right]}\left(\mathrm{mmol} \cdot \mathrm{L}^{-1}\right) & \mathrm{HIT}_{\left[\mathrm{HCO}_{3}\right]}\left(\mathrm{mmol} \cdot \mathrm{L}^{-1}\right) & \mathrm{HIT}_{\left[\mathrm{La}^{-}\right]}\left(\mathrm{mmol} \cdot \mathrm{L}^{-1}\right) & \dot{\mathrm{V}} \mathrm{O}_{2 \max }\left(\mathrm{~mL} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~min}^{-1}\right) & \tau_{1}(\mathrm{~s})\end{array}$

Correlation coefficients

$\mathrm{RSA}_{\text {best }}(\mathrm{s})$	0.01 (-0.34 to 0.36)	0.12 (-0.24 to 0.45)	0.03 (-0.33 to 0.38	0.09 (-0.27 to 0.43)	0.14 (-0.22 to 0.47)
$\mathrm{RSA}_{\text {mean }}(\mathrm{s})$	0.61* (0.33 to 0.79)	-0.71 * (0.48 to 0.85)	0.66* (0.40 to 0.82)	-0.45 * (-0.12 to -0.69)	0.62* (0.34 to 0.80)
$\mathrm{RSA}_{\text {dec }}$ (\%)	0.73* (0.51 to 0.86)	-0.75* (-0.54 to -0.87	0.77* (0.57 to 0.88)	-0.65 * (-0.39 to -0.82)	0.62* (0.34 to 0.80)
Semipartial correlations					
$\mathrm{RSA}_{\text {dec }}$ (\%)	0.77* (0.57 to 0.88)	$-0.83 *$ (-0.68 to -0.91)	0.81* (0.64 to 0.90)	$-0.66 *$ (-0.40 to -0.82)	0.70* (0.46 to 0.84)

Results suggest that faster VO_{2} kinetics and the ability to buffer H^{+}during high-intensity intermittent activity are important characteristics for team-sport athletes.

DO VO_{2} KINETICS MATTER?

Table 1. Differences between professional and amateur soccer players in performance measures from the repeated-sprint ability test, physiological responses during highintensity, intermittent test, and cardiorespiratory measurements.

	Professional $(N=12)$	$\begin{aligned} & \text { Amateur } \\ & (N=11) \end{aligned}$	p value	d value
RSA				
$\mathrm{RSA}_{\text {best }}(\mathrm{s})$	6.86 ± 0.13	6.97 ± 0.15	0.075	0.74 (moderate)
$\mathrm{RSA}_{\text {mean }}(\mathrm{s})$	7.17 ± 0.09	7.41 ± 0.19	0.001	1.30 (large)
$\mathrm{RSA}_{\text {dec }}$ (\%)	4.5 ± 1.9	6.0 ± 1.9	0.064	0.77 (moderate)
HIT				
$\mathrm{HIT}_{\left[\mathrm{H}^{+}\right]}\left(\mathrm{mmol} \cdot \mathrm{L}^{-1}\right)$	46.5 ± 5.3	52.2 ± 3.4	0.007	1.06 (large)
$\mathrm{HIT}_{\left[\mathrm{HCO}^{-1}\right.}\left(\mathrm{mmol} \cdot \mathrm{L}^{-1}\right)$	20.1 ± 2.1	17.7 ± 1.7	0.006	1.09 (large)
$\mathrm{HIT}_{\left[\mathrm{La}^{-}\right]}\left(\mathrm{mmol} \cdot \mathrm{L}^{-1}\right)$	5.7 ± 1.5	8.2 ± 2.2	0.004	1.13 (large)
$\mathrm{HIT}_{\text {HRmean }}$ (\% of max)	87.4 ± 3.8	87.6 ± 4.5	0.887	0.06 (trivial)
$\mathrm{HIT}_{\text {RPE }}$ (CR10)	4.4 ± 0.7	6.4 ± 1.0	<0.001	1.48 (large)
Cardiorespiratory measurements				
$\dot{\mathrm{V}} \mathrm{O}_{2 \text { max }}\left(\mathrm{mL} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$	58.5 ± 4.0	56.3 ± 4.5	0.227	0.51 (moderate)
Amplitude ($\mathrm{mL} \cdot \mathrm{min}^{-1}$)	2519 ± 211	2511 ± 329	0.949	0.03 (trivial)
τ (s)	27.2 ± 3.5	32.3 ± 6.0	0.019	0.95 (large)

Professional and amateur players have same VO_{2} peak ($p=0.227$)

Professional players had:
I) Significantly faster O_{2} Kinetics $\left(t_{1}\right)$

$$
(p=0.0 \mid 9)
$$

2) Significantly faster average sprint times (RSAmean) ($p=0.00 \mathrm{I}$)
3) Reduced level of fatigue (RSAdec)
"Professional players had a lower La^{-}, lower H^{+}, and higher $\mathrm{HCO}_{3}{ }^{-}$response to HITT , suggesting a lower anaerobic contribution (higher aerobic contribution) and (or) a better buffering capacity compared to amateur players."

ARE VO_{2} KINETICS TRAINABLE?

Bailey et al. (2009)

- Purpose: Examine the effects of different training modalities on VO_{2} kinetics and muscle deoxygenation
- Measured as deoxyhemoglobin concentration (HHb) via NIRS
- Goal: Find the "optimal" training strategy to elicit improvements in VO 2 kinetics

- Population: 24 subjects broken into three groups:
- Repeated Sprint Training (RST) - six sessions of 4 to 7 30-second bike sprints (Wingate)
- Endurance Training (ET)- work matched cycling at $70 \% \mathrm{VO}_{2}$ peak
- Control (C)

ARE $\mathrm{VO}_{2} \mathrm{KINETICSTRAINABLE?}$

Results for RST Group:

- VO_{2} kinetics were accelerated for both moderate (Pre: 28 ± 8, Post: $21 \pm 8 \mathrm{~s} ; \mathrm{p}<0.05$) and severe exercise (Pre: 29 ± 5, Post: $23 \pm 5 \mathrm{~s} ; \mathrm{p}<0.05$)
- Exercise tolerance was improved by 53% (Pre: $700 \pm$ 234, Post: I,074 $\pm 43 \mathrm{l}$ s; $\mathrm{p}<0.05$) during step exercise test

[^0]
ARE VO_{2} KINETICS TRAINABLE?

Results for RST Group (con't):

- HHb kinetics were speeded, and the amplitude of the HHb response was increased during both moderate and sever exercise ($p<0.05$)
- Suggest improvement in muscle fractional O_{2} extraction
- O_{2} deficit was significantly reduced at moderate intensities (Pre: 0.45 ± 0.10, Post: 0.36 ± 0.10 liter; p < 0.05)
- Non of these parameters were significantly altered in ET or C groups

LET'S REVIEW

Time (Intensity)

- Other factors, in addition to VO_{2} peak, play significant role is repeated sprint ability
- VO_{2} kinetics - the ability of the aerobic pathway to respond to large changes in workload
- Athletes with faster O_{2} kinetics outperform their peers with similar VO_{2} peak's in RSA tests
- Show less fatigue (\% Dec)
- Increased metabolic Power: \uparrow W / T
- Faster O_{2} kinetics likely mitigate fatigue via:
- Increased energy contribution from aerobic pathway during exercise
- Attenuate depletion of PCr and glycogen stores
- Reduced rate of substrate accumulation
- H^{+}and P_{i}

LET'S REVIEW

- VO_{2} kinetics are believed to be improved by an increase in muscle fractional O_{2} extraction
- Not directly linked to SubVT Capacity, VT, orVO ${ }_{2}$ peak
- Specific training required to target and improve $\mathrm{V} \bigcirc_{2}$ kinetics
- Both of these, VO_{2} and HHb kinetics, appear to be improved with specified high intensity, repeated interval training

P.C.S.P. METHOD:

BLOCK II

PCSP Block II

- Goal: Improve response time of system (O_{2} Kinetics)
- Model: Modified Undulated
- Duration: 2 to 3 weeks

	Day I	Day 2	Day 3			
3-Day Model	Stretch	Pull	Climb			
	Day I	Day 2	Day 3	Day 4		
4-Day Model	Stretch	Pull	Pull	Climb		
	Day I	Day 2	Day 3	Day 4	Day 5	
5-Day Model	Stretch	Stretch	Pull	Pull	Climb	
	Day I	Day 2	Day 3	Day 4	Day 5	Day 6
6-Day model	Stretch	Stretch	Pull	Pull	Climb	Climb

P.C.S.P. Parameters

*Metabolic Lab Profile **Cooper Field Test

RESULTS FROM P.C.S.P.METHOD

Elite Level High School Hockey

- Sample Size: ||
- Pre-test: Start of off-season workouts
- Avg. Pre-test Sprint Reps: 5
- Post-test: 6 weeks
- Avg. Post-test Sprint Reps: 12 (\uparrow | 40\%)

Professional Hockey Players

- Sample Size: 6
- Pre-test: Start of off-season workouts
- Avg. Pre-test Sprint Reps: 7
- Post-test: 5 weeks
- Avg. Post-test Sprint Reps: 13 ($\uparrow 85 \%$)

Profile	Pre-Test	Post-Test	Change	\% Difference
Body Fat \%	16.19	$\mathbf{1 3 . 2}^{\boldsymbol{*}}$	-3.0	$\mathbf{1 8 . 5}$
Vo $_{2}$ peak ($\mathrm{ml} / \mathrm{kg} / \mathrm{min}$)	47.1	$\mathbf{5 0 . 6}^{\star}$	+3.5	$\mathbf{7 . 4}$
HRmax $^{\text {HRab }}$	200	197	-3.0	9.9
HRvt	156	$\mathbf{1 3 6}^{\star}$	-20.0	$\mathbf{1 2 . 8}$
	140	$\mathbf{1 5 8}^{\star}$	+18.0	$\mathbf{1 2 . 9}$

*Significantly different change from pre-test

Profile	Pre-Test	Post-Test	Change	\% Difference
Body Fat \%	12.0	9.3*	2.7	14.2
VO_{2} peak ($\mathrm{ml} / \mathrm{kg} / \mathrm{min}$)	52.5	54.9*	+2.4	4.6
$\mathrm{VO}_{2} \mathrm{vt}(\mathrm{ml} / \mathrm{kg} / \mathrm{min})$	30.7	34.2*	+3.5	11.4
HR max	198	198	0.0	0.0
HRvt	138	157*	+19.0	13.8
Wingate (W) - Peak Power	1097	1137	+40.0	3.6
Wingate (W) Average Power	698	794*	+96.0	13.8
Wingate Fatigue Index (\%)	56.2	51.5*	-4.7	8.4

Special Thanks to:
Danny Raimondi
Tad Johnson
Kyle Ochsner
Cal Dietz

For countless conversations and keeping me focused

Also, Thanks to:
Jay DeMayo and CVASP

And finally, Thank You for your time and attention

Do you have any questions?

Email:
power.pride.prevail@gmail.com

REFERENCES

Montgomery, D.L. (2000). Exercise and Sport Science. Philadelphia, PA: Lippincott Williams \& Wilkins.
Noonan, B. (2010). Intragame blood-lactate values during ice hockey and their relationships to commonly used hockey testing protocols. Journal of Strength and Conditioning Research, 24 (9), 2290-2295.
Pearsall, D., Turcotte, R., \& Murphy, S. (2000). Exercise and Sport Science. Philadelphia, PA: Lippincott Williams \& Wilkins.
Potteiger, J., Smith, K., Maier, K., \& Foster,T. (20IO). Relationship between body composition, leg strength, anaerobic power, and on-ice skating performance in division I men's hockey athletes. Journal of Strength and Conditioning Research, 24 (7), 1755-1762.
Quinney, H.A., Dewart, R., Game, A., Snydmiller, G., Warburton, D., \& Gordon, B. (2008). A 26 year physiological description of a national hockey league team. Applied Physiology, Nutrition, and Metabolism, 33, 753-760

Rampinini, E., Sassi, A., Morelli, A., Mazzoni, S., Fanchini, \& Coutts, A. (2009). Repeated-sprint ability in professional and amateur soccer players. Applied Physiology, Nutrition, and Metabolism, 34, 1048-1 054.
Sahlin, K., Harris, R., \& Hultman, E. (1979). Resynthesis of creatine phosphate in human muscle after exercise in relation to intramuscular pH and availability of oxygen Scandinavian Journal of Medicine \& Science in Sports, 39 (6), 55I-558.
Spencer, M., Lawrence, S., Rechichi, C., Bishop, D., Dawson, B., \& Goodman, C. (2004).Time-motion analysis of elite field hockey, with special reference to repeatedsprint activity. Journal of Sports Science, 22, 843-850.

Spencer, M., Dawson, B., Goodman, C., Dascombe, B., \& Bishop, D. (2008). Performance and metabolism in repeated sprint exercise: effect of recovery intensity. European Journal of Applied Physiology, I03, 545-552.
Taylor, D.J., Bore, P., Styles, P., Gadian, D.G., \& Radda, G.K. (I983). Bioenergetics of intact human muscle: a 3 IP nuclear magnetic resonance study. Molecular Biology and Medicine, I (I), 77-94.

Tesch, P.A.,Thorsson, A., \& Fujitsuka, N. (I989). Creatine phosphate in fiber types of skeletal muscle before and after exhaustive exercise. Journal of Applied Physiology, 66, 1756-1759.

Tomlin, D.L., \& Wenger, H.A. (2002). The relationship between aerobic fitness, power maintenance and oxygen consumption during intense intermittent exercise. Journal of Science and Medicine in Sport, 5 (3), 194-203
Vaughn-Jones, R.D., Eisner, D.A., \& Lederer,W.J.) (I987). Effects of changes of intracellular pH on contraction in sheep cardia purkinje fibers. Journal of General Physiology, 89 (6), IOI5-I 032.

Vescovi, J., Murray, T., Fiala, K., \& VanHeest, J. (2006). Off-ice performance and draft status of elite ice hockey players. International Journal of Sports Physiology and Performance, I, 207-221.
Wadley, G., \& Rossignol, P. (1998) The relationship between repeated sprint ability and the aerobic and anaerobic energy systems. Journal of Science and Medicine in Sport, I (2), I00-IIO.
Walter, G., Vandenborne, K., McCully, K., \& Leigh, J. (I 997). Noninvasive measurement of phosphocreatine recovery kinetics in single human muscles. American Journal of Physiology, 272 (4I), C525-534

COOPER FIELDTEST

What you need:

- 400 meter track
- Stopwatch
- HR monitor
- Whistle

Goal:

- Run as far as possible in 12-minutes

Test Procedures:

- 10 minute warm-up
- On "GO" command, start the stopwatch and the athlete commences the test
- Keeps the athlete informed of the remaining time at the end of each lap (400m)
- The assistant blows the whistle when the 12 minutes has elapsed
- Record the distance the athlete covered to the nearest 10 meters

COOPER FIELDTEST

Calculating VO_{2} peak:

- (Distance covered in meters - 504.9) $\div 44.73$
- Cooper reported a correlation of 0.90 between direct VO_{2} max and field test

Calculating Heart Rate:

- Highest heart rate achieved during test is athletes HRmax
- $\operatorname{HRmax} \times .65=A B$
- $H R \max \times .80=\mathrm{V} T$
- HRmax x. $95=$ VO2peak

COOPER FIELDTEST

Normative Data for Male Athletes						
Age	Excellent	Above Average	Average	Below Average	Poor	
$13-14$	$>2700 \mathrm{~m}$	$2400-2700 \mathrm{~m}$	$2200-2399 \mathrm{~m}$	$2100-2199 \mathrm{~m}$	$<2100 \mathrm{~m}$	
$15-16$	$>2800 \mathrm{~m}$	$2500-2800 \mathrm{~m}$	$2300-2499 \mathrm{~m}$	$2200-2299 \mathrm{~m}$	$<2200 \mathrm{~m}$	
$17-19$	$>3000 \mathrm{~m}$	$2700-3000 \mathrm{~m}$	$2500-2699 \mathrm{~m}$	$2300-2499 \mathrm{~m}$	$<2300 \mathrm{~m}$	
$20-29$	$>2800 \mathrm{~m}$	$2400-2800 \mathrm{~m}$	$2200-2399 \mathrm{~m}$	$1600-2199 \mathrm{~m}$	$<1600 \mathrm{~m}$	
$30-39$	$>2700 \mathrm{~m}$	$2300-2700 \mathrm{~m}$	$1900-2299 \mathrm{~m}$	$1500-1999 \mathrm{~m}$	$<1500 \mathrm{~m}$	
$40-49$	$>2500 \mathrm{~m}$	$2100-2500 \mathrm{~m}$	$1700-2099 \mathrm{~m}$	$1400-1699 \mathrm{~m}$	$<1400 \mathrm{~m}$	
>50	$>2400 \mathrm{~m}$	$2000-2400 \mathrm{~m}$	$1600-1999 \mathrm{~m}$	$1300-1599 \mathrm{~m}$	$<1300 \mathrm{~m}$	

Normative Data for Female Athletes					
Age	Excellent	Above Average	Average	Below Average	Poor
$13-14$	$>2000 \mathrm{~m}$	$1900-2000 \mathrm{~m}$	$1600-1899 \mathrm{~m}$	$1500-1599 \mathrm{~m}$	$<1500 \mathrm{~m}$
$15-16$	$>2100 \mathrm{~m}$	$2000-2100 \mathrm{~m}$	$1700-1999 \mathrm{~m}$	$1600-1699 \mathrm{~m}$	$<1600 \mathrm{~m}$
$17-19$	$>2300 \mathrm{~m}$	$2100-2300 \mathrm{~m}$	$1800-2099 \mathrm{~m}$	$1500-1799 \mathrm{~m}$	$<1700 \mathrm{~m}$
$20-29$	$>2700 \mathrm{~m}$	$2200-2700 \mathrm{~m}$	$1800-2199 \mathrm{~m}$	$1700-1799 \mathrm{~m}$	$<1500 \mathrm{~m}$
$30-39$	$>2500 \mathrm{~m}$	$2000-2500 \mathrm{~m}$	$1700-1999 \mathrm{~m}$	$1400-1699 \mathrm{~m}$	$<1400 \mathrm{~m}$
$40-49$	$>2300 \mathrm{~m}$	$1900-2300 \mathrm{~m}$	$1500-1899 \mathrm{~m}$	$1200-1499 \mathrm{~m}$	$<1200 \mathrm{~m}$
50	$>2200 \mathrm{~m}$	$1700-2200 \mathrm{~m}$	$1400-1699 \mathrm{~m}$	$1100-1399 \mathrm{~m}$	$<1100 \mathrm{~m}$

[^0]: VO_{2} response to a step increment from an unloaded baseline to sever-intensity work rate; RSA (top) and ET (bottom). Pre responses are shown as open
 circles, and the Post responses are shown as solid squares.

